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Abstract

This paper discusses the synchronization issucs that arise when transaction facilities arc extended for use with
shared abstract data types. A formalism for specifying the concurrency propertics of such types is developed,
based on dependency relations that arce defined in terms of an abstract type’s operations. The formalism
requires that the specification of an abstract type state whether or not cycics involving these relations should
be allowed to form. Directorics and two types of queucs are specified using the technique, and the degree to
which concurrency is restricted by type-specific propertics is exemplified. The paper also discusscs how the
specificaticns of types interact to determine the behavior of transactions. A locking technique is described
that permits implemeatations to make usc of type-specific information to approach the limits of concurrency.
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1 Introduction

Transactions facilities, as provided in many database systems, permit the definition of transactions
containing vperations that read and write the database and that interact with the cxternal world. The
transaction facility of the datahase systemn guarantees that cach invocation of a transaction will exccute at most
once (i.c., cither commit or abordy and will be isolated from the deleterious effects of all concurrently
cxccuting  transactions.  To make these guarantees, the transaction  facifity manages  transaction
synchronization, recovery, and, if nceessary, inter-site coordination. Maay pap2rs have been wriiten about
transactions in the context of both distributed and non-distributed databases [Bernstein 81, Eswaran 76, Gray

&0, I smnson 81 Lindsay 79).

There are a number of ways in which transaction facilitics could be extended 1o simplify the construction of
many types of reliable distributed programs, Extensions that allow a wider varicty of operations to be
included in a transaction would facilitatc manipulation of shared objects other than a database. Extensions
that permit transaction nesting would facilitate more flexible program organizations, as would cxtensions
ailowing sume form of inter-transaction communication of uncommitted data. Although the synchronization,
recovery, and inter-site coordinustion mechanisms necded to support database transaction facilities are
rcasonably well understood, these mechanisins require substantial modification to support such cxtensions.
For example, they must be made compatible with the abstract data tyze moedel and with general

implementation techniques such as dynamic storage atlocation.

Lomet [Lomet 77] considered some of the problems encountered in developing general-purpose transaction
facilitics, but more recently, much of the rescarch in this area has been done at MIT. Moss and Reed have
discussed nested transactions and other relate’i .ys.»ms issues [Moss 81, Reed 78]. As part of the Argus
project, extensions to CLU have bcen propose. it incorporate primitives for supporting transactions
[Liskov 82a, Liskov 82b]. Additionally, Weihl has considered transactions that contain calls on shared
abstract types such as scts and message queues, and has discussed their implementation [Wcihl 83a, Weihl

83b]. Transactions will also be available in the Clouds distributed operating system [Alichin 83].

This paper focuses on one important issue that arises when extending transaction Ffacilitics: the
synchronization of operations on shared abstract data types such as dircctorics, stacks, and queues. After a
presentation of background material in the following section, Section 3 introduces some tools and notation for
specifying shared abstract types. Scction 4 describes threc particular data types and uses the tools to specify
how operations on these types can interact under conditions of concurrent access by multiple transactions.
The specifications that are devcloped make explicit use of type-specific propertics, and it is shown how this

approach permits greater concurrency than standard techniques that do not use such information. Scction




5 discussces how the speeifications of individual types interuct to determine global properties of groups of
transactions. Scction 6 preposes an extensible approach to locking that can be used for synchronization in
implementations intended to meet these specifications. Finally, Section 7 summarizes the major points of this
paper and concludes with a brief discussion of other considerations in the implementation of uscr-defined,

shared abstract data typcs.

2 Background

Transactions aid in maintaining arbitrary application-dependent consistency constraints on stored data. The
constraints must be muaintained despite fuilures and without unnccessarily restricting the concurrent

processing of application requests.

In the database literature, transactions are defined as arbitrary collections of database operations bracketed
by two markers: BeginTiaisaction and EndTransaction. A transaction that compleies successtfully commiits;
an incomplete transaction can terminate unsuccessfully at any time by aborting. Transactions have the

following special propertics:

1. Either all or nonc of a transaction’s operations arc performed. This property is usually called
Sfailure atomicity.

2. If a transacrion completes successfully, the effects of its operations will never subsequently be lost.
‘This property is usually called permaience.

3. If a transaction aborts, no other transactions will be forced to abort as a consequence. Cascading
aborts are not permitted.

4, If several transactions execute concurrently, they affect the databasc as if they were executed
serially in some order. This property is usually called serializability.

Transactions lessen the burden on application programmers by simplifying the treatment of failures and
concurrency. Failure atomicity makes certain that when a transaction is interrupted by a failure, its partial
results are undone. Programmers are therefore frec to violate consistency constraints temporarily during the
execution of a transaction. Serializability ensures that other concurrently exccuting transactions cannot
observe these inconsistencies. Permanence and prevention of cascading aborts limit the amount of effort
required to recover from a failure. Transaction models that do not prohibit cascading aborts are possible, but

we do not consider them.

Our model for using transactions in distributed systems differs from this traditional model in several ways.
The most important diffcrence is that we incorporate the concept of an abstract data type. That is,

information is stored in typed objects and manipulated only by operations that are specific to a particular




object type. The users of a type are given a specification that describes the cffect of cach operation on the
stored data, end new abstract types cin be impldmcnlcd using cxisting ones. ‘The details of how objects are
represented and how the operations are carricd out are known only to a type's implementor, Abstract data
wpes grew oul of te class construct in Simula [Dahl 72], and are supported in many other programming
languages including CLU [Liskov 77). Alphard [Wulf 76]. and Ada[Dept. of Defense 82)], as well as in
operating systems, ¢.g. Hvdra [Wulf 74]. In our system model. transactions arc composed of operations on
objects that are instances of abstract types. Of particular interest are those objects that are not local to a single

transaction. These arc instances of shured abstract types.

We assume that the facilities for implementing shared abstract types and for coordinating the eace:tien of
transactions that operate on them are provided by a basic system layer that executes at cach node of the
system. This transaction kernel cxports primitives for svnchronization, recovery. deadlock management, and
inter-site communication. In some ways, a transaction kernel is similar o the RSS of System R [Gray 81). A
transaction kernei, however, is intended to run on a bare machine and must supply primitives uscful for
implemecnting arbitrary data types. whereas the RSS has the assistance of an underlying operating system and

only provides specialized primitives tailored for manipulating a database.

Another difference between our system model and the traditional transaction model is that we do not
necessarily require that transactions appear to exccute scrially. Scrializability ensures that if transactions work
correctly in the abscnce of concurrency, any interlcaving of their operations that is allowed by the system will
not affect their correctness. But sometimes, serializability is too strong a property, and requiring it restricts
concurrency unnecessarily. For cxample, it is usually unnecessary for two letters mailed together and
addressed identically to appear in their recipient’s mailbox together. However, serializability is violated if the
letters do not arrive contiguously, because there is no longer the appearance that the sender has exccuted
without interference from other senders. Thus, it may be desirable for some shared abstract types to allow
limited non-serializable exccution of transactions. This idea has also becn investigated by Garcia-Molina
[Garcia-Molina 83] and Sha et al. [Sha 83].

Serializability guarantees that an ordering can be defined on a group cf transactions. If the transactions
share some common objects, scrializability requires that these objects be visited in the same order by all the
transactions in the group. In the next section, a nore general ordering property of transactions is defined, of
which scrializability is a special case. We will show that it is possible to prove that transactions work correctly

in the presence of concurrency, even if they do not appear to execute serially.

In order to maintain the special properties of transactions in our model, the operations on shared abstract

types that compose them must meet certain requirements. To guarantee the failure atomicity of transactions,
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it must be possible to undo any operation upon transaction abort. Therefore, an undo operation inust be
provided for each operation on a shared abstract type. Recovery is not the main concern of this paper, and we
will be considering undo operations only as they perwin to synchronizativn issues. Further discussion of

recovery issucs can be found in a related paper [Schwarz 83).

Opcrations on shared abstract types must also meet three synchronization requircments:

1. Opcrations must be protected from anomalics that could be caused hy other concurrently
executing operations on the same obicct. Frecdom from these concurrency anomalies ensures that
an invocation of an operation on a shared object is not affected by other concurrent operation
invocations. This is the same property that monitors provide [Hoare 74].

. To preclude the possibility of cascading aborts, operations on shared objects must not be able to
observe information that might change if an uncommitted transactioit were to abort. This may
necessitate delaying the exccution of operations on behalf of some transactions until other
transactions complete, cither successfully or unsuccessfully.

3. When a group of transactions invokes operations on shared objects, the operations may only be
interlcaved in ways that preserve scrializability or some weaker ordering property of the group of
transactions. The synchronization necded to control inicricaving cannot be localized to individual
shared objects. but rather requires coopceration among all the objects shared by the transactions.

Traditional methods for synchronizing access to an instance of a shared abstract type are designed solely @
cnsure the first goal: correctness of individual operations on an object. This paper 1s concerned with the
sccend and third goals. We examine the problem of specifying the synchronization needed to achieve them,
as well as the support facilities that the transaction kernel must provide to implementors of shared abstract

types.

3 Dependencies: A Tool for Reasoning About Concurrent Transactions

This section introduces a theory that can be used to reason about the behavior of concurrent transactions, It
allows the standard definition of scrializability to be recast in terms of shared abstract types, and provides a
convenient way of expressing other ordering properiies. The theory is also useful in understanding cascading
aborts.

3.1 Schedules

Schedules [Eswaran 76, Gray 75] can be used to model the behavior of a group of concurrent transactions.
Informally, a schedule is a sequence of <transaction, operation> pairs that represents the order in which the
component opcrations of concurrent transactions are interleaved.  Schedules are also known as
histories [Papadimitriou 77] and logs[Bernstein 79). In some of the traditional database literature, the
operations in schedules are assumed to be arbitrary; no scmantic knowledge about them is available [Eswaran

76]. In this casc. a schedule is merely an ordered list of transactions and the objects they touch:
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In other work, operations are characterized as Read(R) or Write(W) [Gray 75], in which case the schedule

includes that semantic information:

T,: R(0,)
T,: R(O,)
T,: W(O0,)
T, R(O,)

To analyze transactions that contain operations on spccific shared abstract types, we will consider schedules
in which thesc operations arc characterized explicitly. For exampic, a schedule f’nay contain opcrations to
enter ain clement on a qucuc or to inscrt an entry into a directory. We call these abstract schedules, because
they describe the order in which operations affect objects, regardless of any rcordering that might be done by
their implcmcntauon.1 Given the initial state of a sct of objects, an abstract schedule of operations on these
objects, and specifications for the operations in the schedule, the result of cach operation and the final state of
the objects can be deduced. [-or instance, consider the following abstract schedule, which is composed of
operations on Q, a shared object of type FIFO Qucue. The operations QEnter and QRemove respectively
append an element to the tail of a FIFO Queue and reinove one from it’s head. Assume Q to be empty
initiaily.

T,: QEnter(Q, X)

T,: QEnter(Q, Y)
T,: QRemove(Q)
From this abstract schedule and the initial contents of the Queue, one can deduce the state of Q at any point
in the schedule. Thus one may conclude that the QRemove operation returns X, and that only Y remains on

the Qucue at the end of the schedule.

3.2 Dependencies and Consistency

By cxamining an abstract ’schedule‘ it is possible to determine what dependencies exist among the
transactions in the schedule. The notation D: T:X =g Tj:Y will be used to represent the dependency D
formed when transaction Ti performs operation X and transaction Tj subscquently performs operation Y on
some common object O. The object, transaction, or dependency identificrs may be omitted when they are
unimportant. The sct of ordered pairs {(Ti, Tj)} for which there exist X, Y and O such that D: T X — Tj:Y
forms a relation, denoted < IfT, <y Tj, T, precedes "I‘j and T.i depends on T, under the dependency D.

1ln Section 44 we will define a second kind of schedule, the invocation schedule, which reflects the concurrency of specific
implementations.




Examples of dependencies and their corresponding relations can be drawn from traditional database
systems. For instanee, consider a system in which no semantic knowledge, cither about entire transactions or
about their component operations, is available to the concurrency control mechanism. The only requircment
is that cach individual transaction be correct in itself: it must transform a consistent initial state of the
database to a consistent final state.  Under these conditions, only scrializable abstract schedules can be

guaranteed to preserve the correetness of individual transactions.

Since all operations are indistinguishable, only one possible dependency 1D can be defined: T1 <D T2 if’l‘1
performs any operation on an object later operated on by T,. Now, consider <‘D. the transitive closure of(D.
A schedule is orderable with respect to {<D} iff <’1) is a partial order. In other words, there are no cycles of
the form T, <y T, <5<y T, <y T|. Tn general, a schedule is orderable with respect to S, where S is a set of
dependency relations, iff cach of the rclations in S have a transitive closure that is a partial order. The
relations in S arc referred to as proscribed velations, and we will use orderability with respect to a set of
proscribed dependency relations to describe erdering propertics of groups of transactions. Abstract schedules
that are orderable with respect to a specified set of proscribed relations will be called consistert abstract

schedules.

[t can be shown that orderability with respect o {<D} is cquivalent to serializability [Eswaran 76]. Given a
schedule orderable with respect o {<€ D}. a transaction T, and the set O of objects to which T refers, every
other transaction that refers 0 an object in O can unambiguously be said cither to precede T or to follow
T. Thus T depends on a well-detined set of transactions that precede it, and a well-defined set of transactions
depend on T. Fach transaction sces the consistent database state lett by those transactions that precede it, and
(by assumption) lcaves a consistent state for those that follow. The set of schedules for which <‘D is a partial

order constitutes the set of consistent abstract schedules for a system that employs no semantic knowledge.

The scheme described above prevents cycles in the mosi general possibic dependency relaticn, hence it
maximally restricts concurrency. By considering the semantics of operations on objects, it is possible to
identify some dependency relations for which cycles may be allowed to form. For cxample, consider a
database with a Rcad/Write concurrency control. Such systems reccgnize two types of operations on objects:
Read(R) and Write(W). Thus there arc 4 possible dependencics between a pair of transactions that access a

common object:

eD;: TR =4 Tj:R. T, reads an object subsequently read by Tj.
oD, TR =, TJ.:W. T, rcads an object subsequently modified by Tj.

oDy TiW =, Tj:R. T, modifics an object subsequently read by Tj.




e TiW — 'l’J:\V. I modifies an object subsequently modificd by 'l'j.

The carlier scheme, by not distinguishing between these dependencies, prevents cyeles from forming in the
dependency relation <;y which is the union of ali four individual relations. By contrast. Read/Write
concurreney conirols take into account the fact that R — R dependencies cannot influence system behavior.

That is. given a pair of transactions. ', and T, and an abstract schedule in which hoth Tand T, perform a

i

Read on o shared object. the semantics of Read operations ensure that neither LI

T}, Since thase dependencies cannot

nor any other

transaction in the schedule can determine whether T, <5 1 or 1, <

| - !
be obsenved. they cannot compromise serializability. nor can they aifeet the outcome of transactions. We call
dependenctes mecting  this criterion insigadficant. Korth has also noted that when operations are

commutative, their ordering does not affect senalizatiliry [Korth 83).

For the Read/Write case, the necessary condition for serializability can be restated as follows in terms of

dependency relations:  a schedule is serializable if it is orderable with respect to {<D CD.iDh } [Gray 75). By
277y

allowing multiple readers, Read/Write schemes perinit the formation of cycles in the <D dependency

relation. and in relations that include <D . while preventing cycles in the relation that is the union of <, , €

Dy, "D
2 3
and <D . For example, consider the following schedules, which have identicai effects on the svstem state:
4
Tyt R(Q,) T,: R{Cy)
T,: R(0y) T,: R(O,)
T, W(0,) Ti: W(0y)
In the first schedule, T, <Dl T2 and T, <D2 T,. Hence, there is a cycle in the relation <D1U02’ although
<5-uD.uD, IS cycle-free. In the second scheduie, the first two steps are reversed and neither cycle is present.
2%

On the other hand, the fcllowing two schedules are not necessarily identical in effect:

T.: R(0,) T,: W(0,)
T,: W(0,) T,: R(O,)
T,: w(0,) T,: W(0,)

In this case, the first schedule is not serializable because T 1 <D T2 and T 5 <D Tl, thus forming a cycle in the
. 2 a0

relation <y, D, which is a sub-rclation of <D2L_'D D, T, observes O1 before it is written by T,, but the final

state of O, reflects the Write of T, rather than T,, implying that T, ran after T,. The sccond schedule has no

cycle and is serializable.

In summary, orderability with respect to a set of proscribed dependency relations provides a precise way to
characterize consistent schedules. For a concurrency control that cnforces scrializability with no scmantic
knowledge at all about operations, the set of proscribed relations must contain < Which is equivalent to the
union of every possible dependency rclation. For a Read/Write database scheme, the set contains the

Raw U W—R L W_w relation. When type-specific scmantics arce considered, type-specific dependency




relations ¢ o¢ defined for cach pe.  In Scction 4, dependencies are used to define interleaving
spectfications tor various abstract types. These specifications provide the information needed to determine
now an indinvdual tpe can contribute toward maintaining a global ordering property such as «erializability.
If & specification puarantees orderability with respect o the union of all significant dependency relations for a
given type, then it is strong cnough to permit scrializability. In general, however, more concurrency can be
obtained when only weaker ordering properties are guaranteed.  The way in witich the interleaving

specttications of multiple types interact to preserye global ordering properties is discussed in Section §.

3.3 Dependencies and Cascading Aborts

Dependencies are also uscful in understanding cascading aborts. A cascading abert is possible vhen a
dependeney  forms between two transactions, the first of which is uncommitted.  An abort by this
uncommitted transaction may cascade to those that depend on it. Whether or not a cascade actually must
seeur depends on the exact type of dependency involved, and the properties of the object being acted upon.
f-or example. consider the four general dependency relations that arise in Read/Write database systems.
R — R dependeacies 2re insignificant, and can never cause cascading aborts. This is anaiogous w the role of
these dependencivs in detenmining orderability. Likewise, R — W and W — W dependencies need not cause
cascading aborts. ecause in berth cases the outcome of the sceond transaction does not depend on data
modified b, the first® Dy contrast. W — R dependencics represent a transfer of information between the two
rransactions. In the abscence of any additional semantic information, it must be assumed that an abort ef the

first transaciion will affect the outcome of the second, which must therefore also be aborted.

Once the dependencies that could lead 1o cascading aborts have been identified, their formation must be
controlled. Stated in terms of abstract schedules: starting from the first of the two operations that form the
dependency there must be no overlapping of the two transactions in the schedule, with the prior transaction
in the dependency rclation completing first.  Such schedules will be called cascade-free. Note that some

consistent schedules may not be cascade-free, and vice-versa.

4 Specification of Shared Abstract Types

This scction focuses on the typed operations that make up transactions and discusses how to specify their
local synchronization propertics. The traditional specification of an abstract type describes the behavior of
the type’s operations in terms of preconditions, pustconditions, and an invariant. This specification must be
augmented in several ways to complete the description of a shared abstract type in our model. In the first

place, the undo operation corresponding to cach regular operation must be specified in terms of

Zh may be nceessary o control the formation of these dependencics anyway, if an insufficiently flexible recovery strategy is used.




preconditions, postconditions and the invariant.  Specification of the undo operations themselves is not
considered further in this paper. Ttis imporwant o note. however, that the set of consistent abstract schedules
defined by e interleaving specification for a type also implicitly includes schedules in which undo
operations aie inseried at all possible points after an operation has been performed but prior to the end of the
invoking transaction. "Phis reflects the assumption that it must be possible to undo any operation prior to
transaction commutment. As will be shown in Section 4.3, this is especially important for types that do not

attempt to enforce serializability of transactions.

The specification of a sisared abstract type must also include a description of how opcrations on behalf of
maluple transactions can be interlcaved.  This interieaving specification can be used by application
programmers to describe their needs to prospective type implementors or to evaluate the suitability of existing
nnes for their applications. The specification of a shared abstract type must also list those dependencics that
will be controlled to prevent cascading aborts.  This part of the specification is used mainly by the type's

implementor.

When specifying how operations on a shared object may interact. the amount of concurrency that can be
permiticd depends 1in part on how much detailed knowledge is available concerning the semantics of the
operations [Kung 79]. We have shown how concurrency controls that distinguish those operations that only
observe the state of an object (" Reads”) from those that modify it ("Writes™) can achieve greater concurrency
than protocols not making this distinction. To increase concurrency further while still providing
scrializability. one can take advantage of mo.g semantic knowledge about the operations being
pcriormed [Korth 83]. Scction 4.1 illustrates how this is done in specifying Directories, using the concepts

and notation of the last section.

When enough concurrency cannot be obtained even after fully exploiting the semantics of the operations on
a type, it is necessary to dispense with serializability and substitute orderability with respect to some weaker
sct of proscribed dependency relations. Scctions 4.2 and 4.3 illustrate this by comparing a serializable Queue

typc with a variation that preserves a weaker ordering property.

Finally, Secction 4.4 discusses low implementations may recorder operations to obtain even more
concurrency, and the steps that type implementors must take to demonstrate the correctness of an

implementation.
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4.1 Directories

As a first caample, consider & Directory data type that is intended to provide a mapping between text strings
and capabilities for arbitrary objects. Lhe utuad operations are provided:
o Dirlnsert(dir, str, capa): inserts capa into Dircctory div with key string str. Returns ok or duplicate

key. The undo operation for Dirinsert removes the inserted entry, if the insertion was successful.

o DirDelete(dirstr): deletes the capability stored with key string str from dir.  Revirns ok or not
found. The undo operation for Dirlyelete restores the deleted capability, if the delction was
successful.

o Dirl.ookup(dir, str): scarches fur a capability in dir with key string str. Returns the capability capa
or not found. The undo operation is null, because Dirl.ookun does not mediiy the Directory.

o DirDump(dir): returns a vector of <str,capa> pairs with the complete contents of the Directory dir.
The undo operation for DirDump is null.

Suppose one wishes to specify the Dircctory type so as to permit serialization of transactions that include
operations on Directorics. One approach would be to model cach Dirlnsert or DirDelete operation as a Read
opcration followed by a Write operation, and to modcl cach DirLookup or DirDump operation as a Read
operation. The Directory type could then be specified using the Read/Write dependency relations discussed

previously.

The difficulty with using such limited semantic information is that concurrency is restricted unnecessarily.
For example, suppose Directorics have been impiemented using a standard two-phase Read/Write locking
mechanism. Consider the operation DirLookup(dir, "Foo"), which will be blocked trying to obtain a Read
lock if arother transaction has performed DirDelete(dir, "Fum™) and holds a Write lock on the Directory
object. The outcome of DirLookup(dir, "Foo™) docs not depend in any way on the eventual outcome of
DirDelete(dir, "Fum"™) (which may later be aborted), or vice-versa, so this blocking is unnecessary. Because
DirDelete(dir, "Fum") may be part of an arbitrarily long transaction, the Write lock may be held for a long

time and severely degrade performance.

The unnecessary loss of concurrcncy in this example is not the fault of this particular implementation. Itis
caused by the lack of semantic information in the Directory specification. By using more knowledge about
the operations, this problem can be alleviated. Instead of expressing the interlcaving specification for this
type in terms of Read and Write operations, the type-specific Directory operations can be cmployed to define
dependencies and the interleaving specifications can be expressed in terms of these type-specific

dependencies.

To keep the number of dependencies to a minimum, the operations for the Directory data type will be

divided into three groups:
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o ‘Those that modify a particular entry in the Directory. Dirlusert and DirDelete operations that
succeed are in this class. These are Modify (M) operations.

o Those that obscrve the presence, absence, or contents of a particular entry in the Directory.
Dirf.ookup is in this class, as are Dirlusert and DirDelete operations that fail. These are Lookup
(1.) operations.

o Thosc that observe propertics of the Directory that cannot be isolated to an individual entry.
DirDump is the only opceration in this class that we have defined: an operation that returned the
number of entrics in the Directory would also be in this class. These are Dump (1)) operations.

Note that in some cascs operations that fail are distinguished from those that succeed. In addition to the
operations and their outcomes, the dependerncies also take into account data supplicd to the opcrations as
arguments or otherwise specific to the particular object acted upon. In the following list of dependencics, the

symbols ¢ and ¢’ represent distinct key string arguments to Directory operations.

The complete set of dependencies for this type is:

° D - T. 'M(o — T :M(a'). T modnf‘.cs an entry with key string e, and T, subscqucnt‘y modifies an
cntw wuh a different key smng,

° D T:M(a) — FJ M(o). T modifics an entry with key string o, and T subscquently modifies
Lhc samc entry.

) D T M(o) — T.:1.(c). T modlﬁcs an entry with key string o, and T subscquently observes an
anrv with a different key smng,

) D l" M(a) — T :L(o). I modifics an entry with key string o, and T svbscqucmly observes the
same cntry

. D : T, 'L(a) — T.:L(a"). T observes an entry with key string o, and T subsequently observes an
entry thh a different key smng o’

° D6: Ti:L(a) — Tj:I_(o). Ti observes an entry with key string o, and Tj subsequently observes the
same cntry.

. D T :L(o) — T.:M(a"). T observes an entry with key string @, and T subsequently modifies an
emry w1Lh a different key smng a’.

° D8: Ti:L(o) — Tj:M(a). T, observes an entry with key string o, and T i subsequently modifies the
same entry.

) D T :D — T.:M(o). T dumps the entire contents of the Directory, and T subsequently
modlﬁcs an entry with key smng g.

) D T, ‘D — TJ L(o). T dumps the entire contents of the Directory, and T subsequently
obscrvcs an entry with key smng g.
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Dy, i (o) — T.:D. 'l'l modilies an ciilry with key stiing o, and 1 subscquently dumps the

»nurc contents of the Dircctory.

° D I (o) — ' .i observes an cntry with key string . and [ subscquently dumps the
cntm cuntcn(s of Lﬁ‘c DerC((‘['y

o Do 1D — 1D T, dumps the entire contents of the Directory and 'I‘j subscquently dumps the
l)ncuow as well,

‘This list is long, but it is actually quite simple to derive. There is a family of dependencics for cach pair of
operation classes. The key w defining the specific dependencies is the observation that when two operations
refer to different strings. the relationship between the transactions that invoked them is not the saime as when
they refer to identical strings. Those families of dependencies for which both operation classes take a string
argumecnt therefore have two members. corresponding to these two cases. The families for which ong of the
opcration classcs is Dump have only a singic member. In gencral, insight into the semantics of a type is

nceded to define the set of possible dependencies.

Like the R — R dependency, many of the Dircctory dependencics are insignificant and cannot affect the
outcome of transactions. Hence. they may be excluded from the sct of proscribed dependericics for this type.
The dependencies that may be disregarded arc:

¢ Those for which neither opcration in the dependency modifies the Directory aobject: Dy D10‘ D

and Du. These are directly analogous to the R — R dependency.

o Those for which the two operatiens in the dependency refer to different key strings: Dl, D3, DS’
and D,.
7

In terms of the remaining dependencics, the interleaving specification for Dircctories states that an abstract
schedule involving Dircctories is consistent if it is orderable with respect to {<D2bD UD.UD.uD }. The
abstract Directory thus defined behaves like a collection of associatively-addressed elements, with
scrializability preservable independently for cach clement. Transactions containing operations that apply to
the entre Directory, such as DirDump, may also be scrialized, as may those that refer to multiple elements or

clements that are not present.

Only two of the Dircctory dependencies have the potential to cause cascading aborts. These are D, and
Du' In both cascs, the first operation in the dependency modifics an entry and the sccond operation observes

that modification.




4.2 FIFO Queues

Similar specifications can be developed for other data types. The [F1FO Queue provides an interesting

cxample. We will only consider two operations:

o QFnter(queue, capa): Adds an entry containing the pointer capa io the end of queue. The undo
opcration for QEnter rcmoves this entry.

o QRemove(queue): Removes the entry at the head of queue and returns the pointer capa contained
therein. If queue is empty. the operation is blocked, and waits until queue becomes non-empty.
The undo operation for QRemove restores the entry to the head of queue.

In order to permit serialization of transactions that contain operations on strict FIFFO Queues, and to

prevent cascading aborts, numecrous propertics must be guaranteed. For instance:

e [fa transaction adds scveral entrics to a Queue, these entries must appear together and in the same
order at the head of the Qucue.

e Any entries added to a Queue by a transaction may not be obscrved by another transaction unless
the first transaction tenminates successfully.

e If two transactions cach make cntrics in two Qucues, the relative ordering of the cntrics made by
the two transactions must be the same in both Queues.

It is very casy to destroy these propertics if unrestricted interleaving of operations is allowed. For instance,
if QEnter operations from different transactions are interlcaved, the entries made by each transaction will not

appear in a block at the head of the Queue.

In dcfining the dependencics for the Queue type, it is nccessary, as it was in the casc of Directories. to
distinguish individual clements in the Queue, It is assumed that cach element is assigned a unique identifier?
when it is cntered on the Queue. The symbols ¢ and ¢’ are used to represent the distinct identifiers of
different clements, and the QEnter and QRemove operations are abbreviated as E and R respectively. The

complete sct of dcpendcncics for Queues is:

eD;: T:E(v) —q T.:E(a"). Tj enters an element ¢’ into the quecuc Q after T, has previously
entcred an element o.

oD, Ti:E(a) - Tj:R(a'). Tj removes clement ¢’ after T, entered clement o.
) D3: Ti:E(o) e Tj:R(o). Tj removes the clement o that was entered by Ti'

oD, 'I‘i:R(a) - Tj:E( o). 'I‘j enters clement o’ after ’I‘i removed clement o.

3The identifier need not be globaily unique, just unique among those generated for the particular Queue object.
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. DS: Ti:l{(o) ~q 'l'j:R(o'). 'l"j femoves element o after 'l"l removed clement o.

In a Read/Write synchronization scheme, QFnter must be modeled as a Write operation, and QRemove
must be modeled as a Read followed by a Write. Recall that such a scheme must prevent cycles in the
Row U WeR U WeeW dependency relation.  In this case, preventing cycles in this general dependency
relation is unnccessarily restrictive. Consider dependency Dz' which is formed when a transaction removes a
Qucue clement after another transaction has previously entered a diiferent Queuce clement. Neither of the
transactions performing thc opcrations can detect their ordering, nor can a third transaction. The same
applics to dependency 1, which is the inverse of 1),. As was the case for Directories, concurrency can be

increased by disregarding insignificant dependencics.

To provide a strictly FIFO Qucue. one must guarantec that abstract schedules are orderable with respect to

the compound < relation, but cycles may be permitted to form in relations that include l)2 or 1)4 as

D,uD,u D
| i
long as this property is not violated. For example, consider the following schedule, in which two transactions

opcrate on a Qucuc that initially contains {A, B}:
T,: QEnter(Q,X)
TZ: QRemove(Q) returns A
T,: QEnter(Q,Y)

At step 2 of this schedule a D, dependerncy is formed. hence T, <, T.. Atstep 3. however, a D, dependency
2 17D, 72 4

is formed with '1"2 <D Tl. Clearly a cycle exists in the compound relation < [t is easy tc create other
4

D,uD,’

2754

examples of consistent abstract schedules that demonstrate a cycle in the basic <D {or <D ) relation, or in a
2 4

compound relation formed from D2 (orD 4) together with Dl’ D3 and DS'

The dependency relations can also be used to characterize schedules susceptible to cascading abort.
Dependency relation < is similar to the W — W dependency. Since entrics made by an aborted transaction
can be transparently removed from the Queue, there is no danger of cascading abort. Relations <p. and <
arc more similar to W — R dependencies. In a D3 dependency, information is transferred between the
transactions in the form of the queue element o this dependency clearly can cause cascading aborts, A Ds
dependency can also causc cascading aborts, because the removal of an element by the first transaction affects

which element is received by the sccond transaction.

While this definition of consistency for Queucs is an improvement over a Read/Write scheme, it is still very
restrictive of concurrency. It allows at most two transactions, one performing QEnter operations and one
performing QRemove operations, to access a Queue concurrently.  Unlike the Directory, the Queue is
intended to prescrve a particular ordering of the clements contained in it. A system based on serializable
transactions guarantees that transactions can be placed in some order: by enforcing a particular order, data

types such as qucues (and stacks) restrict concurrency.
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4.3 Quecues Allowing Greater Concurrency

The preceding examples show how the use of semantic knowledge about operations on a shared abstract
type permits increased concurrency. Once such knowledge is incorporated, the limiting factor in permitting
concurrcncy becomes knowledge about the consistency constraints that the operations in a transaction
auempt to maintain [Kung 79]. This knewledge concerns the semantics of groups of operations rather than
individuai ones.  For cxample, a consistency constraint might state that cvery Qucuc entry of type A is
immediately followed by onc of type B. The potential for such constraints was the causc of the concurrency

limitations obscrved above.

if it is possible to restrict the consistency constraints that a programmer is free to require, types
guaranteeing ordering propertics weaker than scrializability may be acceptable.  This may permit further

increases in concurrency. A variation of the queue type can be used to demonstrate this,

One of the most common uscs for a quecuc is to provide a buffer between activitics that produce and
consumc work. Frequently, the exact ordering of entrics on the queuc is not important. What is crucial is
that entries put on the rear of the queue do not languish in the queuc forever; they should reach the head of
the qucuc "fairly” with respect to other entrics made at about the same time. A data type having this
non-starvation preperty can be defined: the Weakly-FIFO Queue (WQucue for short). A similar type, the
Semi-Queue, has been defined by Weihl [Weihi 83b].

The operations on WQueucs and their corresponding undo operations are similar to those for Queues, but
the interlcaving specification for WQucues allows more concurrency. The dependencies for the WQueue
type are the same as for the strict Queue. However, where the strict Qucue required that consistent abstract

schedules be orderable with respect to {< D }, the WQueue permits cycles to occur in all the
5

D,uD,u
1773
dependency relations save one: < . By allowing cycles in <y , the interleaving of entries by multiple
transactions bccomes possible.  Similarly, removing D, from the set of proscribed dependency relations

permits YWQRemove operations to be interleaved.

To take full advantage of the greater concurrency allowed by this interleaving specification, the semantics of
WQRemove differ slightly from those of QRemove. If the transaction that inserted the headmost entry in the
queue has not committed, that entry cannot be removed without risking the possibility of a cascading abort.
Instead, WQRemove scans the WQueue and removes the headmost entry for which the inserting transaction
has committed. If no such element can be found, any clements insertcd by the transaction doing the
WQRcemove become eligible. for removal, If neither a committed entry nor one insertcd by the same

transaction is available, the operation is blocked until an inserting transaction commits,
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Modifying the semantics of WQRemove in this way does not destroy the fairness propertics of the WQueue.

No entry will remain in the WQucuce forever ift

1. The transaction that entered it commits in a finite amount of time.
2. Transactions that remove it terminate after a finite amount of time.

3. Only a finite number of transactions remove the entry and then abort,

‘The behavior of the WQueuc is best illustrated by example. In what follows, a WQueuc is represented by a
sequence of letters. with the left end of the sequence being the head of the WQueue. Lower case italic letters
(a) arc used to denote entries for which the WQEnter operation has not committed (i.c. the transaction that
performed WQEnter is incomplete). Upper case bold letters (A) arc used to represent entries that have not
been removed and for which the entering transaction has committed. Upper case italic letters arc used for
cntrics that have been removed by an uncommitted WQRemove.  Superscripts on entrics affected by

uncommitted operations identify the transaction that performed the operation.

Assumc that the WQueue is initially ecmpty. If transactions Tl and T2 perform WQEnter(WQ, a) and

WQEnter{WQ, b) respectively, the WQucue’s state becomes:

{d, ¥}
Since cycles in <p. are permitted, T1 may also add another entry, yielding:

{d, b, cl}1
If'T, and T, both commi, the state becomes:

{A,B,C}
Note that the serializability of T, and T, has not been preserved. Now supposc that T, performs WQRemove
and another transaction, T, removcs two more elements:

{4 B, %
If T, now aborts and T, commits, the final state becomes:

{A}
In this case. A and C have effectively been reversed, even though they were inscrted initially by the same
transaction! This example illustrates an important difference between shared abstract types that attempt to
preserve serializability and those that do not: when a type permits non-serial cxccution of transactions,
invoking an operation and subsequently aborting it is not necessarily equivalent to not invoking the opcration
at all. While we do not explicitly consider the undo operations in defining dependencies or interleaving
specifications, the underlying assumption that aborts can occur at any time prior to commit implics that undo
operations can be inscrted at any point in a schedule between the invocation of an operation and the time at

which the invoking transaction commits.
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Another cxample indicates what happens when an uncommitted cntry reaches the head of the Queue.

Suppose the initial state is:

{2, 1%

If T, commits but T5 remains incomplete, the state becomes:
{7, B}

lf'T7 removes an elemciit at this time, B will be returned, leaving:
('}

after T7 comnﬁts. On the other hand, if"l‘S commits after '1"6, but before the remove by '1‘7, A will be returned

even though its inscrtion was committed afier B’s.

To summarize the comparison between the WQueue and the ordinary Qucue, note that two properties of
the rcgular Queuc have been sacrificed.  First, strict FIFO ordering of entrics is not guarantced, because
aborting WQRemove operations can rcorder them. Seccond, transactions that operate on WQucucs arc not
neccssarily scrializable with respect to all transactions in the system. Some other cruciai propertics, however,
are preserved. The WQuecue will not starve any entry, and it enforces an ordering of thosc transactions that
communicate through access to a common clement of the queue. This is ensured by orderability with respect
to {<D3}. These madifications greatly increase concurrency, while still providing a data type that is uscful in

many situations.

4.4 P:oving the Correctness of Type Implementations

Whereas the user of a type may employ the specified properties of abstract schedules (along with the rest of
the type’s specification) to reason about the correctness of transactions, the inplementor of a type must prove
the correctness of an implementation given the order in which opcrations are actually invoked. Real
implementations may reorder the operations on an object to improve concurrency without changing the type’s
interleaving specification. Consider an implementation of the Qucue type in which elements to be entered by
a transaction are first collected in a transaction-local cache and entered as a block at end-of-transaction. This
implementation allows any number of transactions to invoke the QEnter opcration simultaneously, provided
care is taken to serialize correctly transactions involving muitiple Queues. By actually performing the
insertions as a block, this implementation effectively rcorders the individual QEnter operations to preserve
consistency. It is possible to reorder QEnter operations in this way because QEnter does not return any
information to its caller. Formation of any dependencics that might result from its invocation can therefors
be postponed. The ultimate ordering of operations in the abstract schedule is determined by the
implementation once all the QEnter operations to be performed by a given transaction are known. Thus, this

implementation has the benefit of more knowledge about transactions than has the standard implementation.
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{nmvecation scheduics Tist operations in the order in which they are actually invoked, rather than in order of
their abstract effects®. For example. the following is a possible invocation schedule for a Queue implemented

using the block-tnsertion technique described above:

T,: QEnter(Q.Y)
T,: QEnter(Q,X)

T,: QRemove(Q)

If T commits betlore 'l‘z. the implementation reorders the two QFnter operations, resulting in the abstract

schedule:

T,: QEnter(Q, X)
T,: QEnter{Q, Y)
T,: QRemove(Q)

3 H

The mapping between invocation schedules and abstract schedules is many-one; cach invocation schedule
implcments cxactly onc abstract schedule, but an abstract schedule may be implemented by multiple
invocation schedules. The synchronization mechanism used by an implementation determines a set of
invocation schedulcs, called fegal schedules, that are permitted by the implementation. The implementor
ulusi show that aut legal invocation schedutes map to consistent abstract schedules. To prevent cascading
aborts as well, implementors must use a synchronization strategy that restricts the sct of legal invocation
schedules to those that map to abstract schedules that are 1 the intersection of the consisteni and cascade-free

sets.

5 Orderability of Groups of Transactions

The preceding section described how the standard specification of an abstract type, \w;/hich only sceks to
characterize the type’s invariants and the postconditions for its operations, can be augmented with an
interleaving specification that describes the local synchronization properties of objects. In this section we
broaden our focus from the properties of the typed objects that are manipulated by transactions to the
properties of entire transactions. We first examine how to generalize the definition of consistent abstract
schedules to schedules that include operations on more than one object type. and then consider how ordering

properties of groups of transactions can be used to show their correctness.

4It is assumed that the actual concurrent execution of the transactions can be modeled by a lincar ordering of their component
operations. This requires that the primitive operations be (abstractly) atomic. In the multiprocessor case, all lincarizations of operations
that could occur simultancously yield distinct invocation schedules.
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5.1 How lihe Specifications cf Multipie Types Interacl

Guaranteeing orderability with respect to the proscribed relations of a collection of individual types is not
sufficient to ensure global ordering properties of transactions. such as serializability. Consider the following
schedule, which contains transactions that operate both on Queucs and Dircctories.  Each of these types
preserves orderability with respect to the union of all significant dependencices for the individual type, in
order that transactions involving the type may potentially be scri:xlimd._ However, this propeity alone does

not guarantee serializability of the transactions. For example, the following schedule is not scrializable:
T,: QEnter(Q,X)

1
T,: QEnter(Q.,Y)
T,: Dirlnsert(D, "A", Z)
T,: DirDelete(D, "A")

Iet (Dir stand for the € stand for the

<oy
D uD5uDg

{(Dir. <Q}. it is not scrializable. To achieve scrializability, the Quecuc and Dircctory types must coopcerate to

H £ arlio frein
D,uD,DEUDGUD, relation, defined carlier for type Directory. et <Q

relation, defined carlier for Queucs.  Although the schedule is orderable with respect to

prevent cycles in the relation {(D.l ruQ}' The schedule is not orderable with respect to this compound

dependency.

This examnple indicates how to generalize the definition of consistency to apply to abstract schedules
containing operations on multiple types. Assume the interlcaving specification for type Y1 guarantees
orderability with respect to {<D1}, the interleaving specification for type Y, guarantces orderability with
respect to { <D,}’ etc. The set of consistent abstract schedules involving types Yl. Y, .. Yn is defined as thosc

abstract schedules that are orderable with respect to {< }- the union of the proscribed

DyuDyu .. UD
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dependency relations of the individual types. A sct of types whosc implementations satisfy this property is

called a sct of cooperative types.

The need for cooperation among types does not necessarily imply that whenever a system is extended by
the definition of a new type, the synchronization requircments of ali existing types must be rethought. When
designing a system, however, the implementors of cooperative types must first agree on a synchronization
mechanism that is sufficiently flexible and powerful to meet all of their requirements. A poor choice of
mechanism for fundamental building-block types will have an adverse effect on the entire system. Section
6 describes a mechanism based on locking that permits highly concurrent implementations of a large variety

of shared abstract types.
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5.2 Correctness of Transactions

When afl of the types involved in a group of transactions cooperate to preserve an ordering property
equivalent to scrializability, it is casy to show that the correctness of transactions is not affected by
concurrency.  Because transactions are completely isolated from onc another, a transaction can be proven
correet solely on the basis of its own code and the assumption that the system state is correct when the

transaction is initiated.

It is much more difficult to prove the correctness of transactions when they include operations on wypes that
permit non-serializable interaction among transactions. One must consider the possible effects of interlcaving
cach transaction with any other transaction, subject to the constraints of whatever ordering property is
guaranteed by the collection of types. Nevertheless, in miany practical situations. this task should not be
insurmountable. We give two examples of situations where it is possible to make uscful inferences about the

behavior of transactions cven though they preserve an ordering property weaker than scrializability.

1isers often invoke the DirDump operation on a Dircctory when they are "just looking around.” In such
cascs, users would like to scc a shapshot of the Directory’s contents at an instant when the status of each ¢ntry
is well defined, but they don't care what happens io the Dircctory thereatter. If all Directory operations
attempi to enforce scrializability, using DirDumnp in this way could greatly restrict concurrency. This problem
can be alleviated by modifving the specification of the Directory type to permit limited non-serializable

bchavior.

Suppose dependency relations containing D9: Ti:D — Tj:M(a) arc removed from the set of proscribed
relations for the modified Directory type. That is, the interleaving specification for Dircctories only requires

orderability with respect to {<D2uD UD.uD } instead of {K UDauD }. Although this modified
4 11 8~~9¥ 11

D,uD,uD,
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Directory allows non-scrializable behavior, on¢ can still guarantee that certain consistency constraints are not
violated. For example, if a transaction replaces a group of entrics in a Dircctory, one can still prove that no

other transaction doing Dirl.ookup operations will observe an incompatible coilection of entries.

The WQucue of scction 4.3 provides another example of a useful type that permits noa-serializable
interaction of transactions. Although the ordering property for WQuecues is weaker than the one for strict
Qucues, some interesting properties can still be deduced based only on orderability with respect to {<D3}'
Consider two transactions, T1 and T,, and two WQueues, Q, and Qz' Suppose T1 is intended to move all
elements from Q1 to Q2 and T2 is intended to move all elements from Q2 to Ql‘ If these transactions are run
concurrently, the elements should all wind up in one WQuecue or the other. This can be guaranteed only if
<D3 is proscribed; otherwise clements could be shuffled cndlessly between Q1 and Q2 and the transactions

might never terminate,
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6 A Technique for Synchronizing Sharcd Abstract Types

We have developed a formalism for specitying the synchronization of operations on shared ahstract types,
and intericaving specifications for some example tvpes have been given,  This section outlines a
synchronization meclianism that can be used in implementations of these types. While we do not describe a
particular syntax or implementation for this mechanism, we show how it can be usced to prevent cascading
aborts and conurol the interleaving of operations. We show how it provides the cooperation among types that
is needed to preserve serializability or a weaker ordering property of a group of transsctions, Implementation

sketehes for the shared abstract types specified in Section 4 are given as examples of its use.

As indicated in Scction 4.4, the implementor of a type must take the following steps to demonstrate the

correctness of an implcmentation:

1. characterize the set of fegal invocation schedules, that is, those invocation schedules allowed by
the synchronization mechanism used in the iimplementation.

2.give a mapping from invocation schedules to abstract schedules, and prove that the
implementation carries vut this mapping.

3. prove that cvery legal invocation schedule yields a consistent abstract schedule uncer this
mapping.

This three-part task is simplest for implementations that arc idealized in that they do not reorder operations
on objects. Under these conditions. invocation schedules and abstract schedules arce equivalent, and the
second step in this process can be climinated. The examples in this section discuss such idealized

implementations of types.

6.1 Type-Specific Locking

The proposed synchronization technique is based on locking, which is used in many database systems to
synchronize access to database objects. There are many variations on locking, but the same basic principle
underlics them all: hefore a transaction is permitted to manipulate an object, it must obtain a lock on the
object that will restrict further access to the object by other transactions until the transaction holding the lock

releases it.

Locking restricts the formation of dependencies between transactions by restricting the set of legal
invocation schedules. Whenever one transaction is forced to wait for a lock held by another, the formation of
a dependency between the two transactions is delayed until the first transaction releases the lock. Under the
well-known two-phase locking protces! {Eswaran 76), no wansaction releases a lock until it has already claimed

all the locks it will cver claim. This has the cffect of converting potential cycles in dependency relations into




deadlocks instead. These can be detected. and because no dependencics have yet been aliowed w form, cither

transaction can be aborted without affecting the other.

Locking is a conservatise policy, because it delays the formation of any dependency that is part of a
proscribed relation, not just those that eventually lead to cycles. This is not as significant a disadvantage as it
might appear. however. because formation of those dependencies that tansfer information (see Section 31.3)
must be delayed anvway o prevent cascading aborts.  In fact, the even more restrictive strategy of holding
cerwain locks until end-of-transaction must often be employed 1o ensure that schedules are cascade-free.
FFurthermore, it is the conservative nature of locking protocels that makes tiiem a suitable mechanism for sets
of cuoperative tvpes. By preventing the formation of any dependencics local to a single vbject, cycles in
proscribed relations that involve multiple types are automatically avoided without cxplicit communication
between type managers. This is an important advantage. because it allows type managers to be constructed

independently, as long as they correctly prevent the local formation of dependencices.

The chicf disadvantage of many locking mechanisms is that they sacrifice concurrency by making minimal
use of sctuantic knowledge about the objects being manipuluted. The simplest locking schemes use only one
type of lock, and hence cannot distinguish between significant and insignificant dependencics. Read/Write
locking schemes use some semantic information, but are not flexible encugh to take advantage of the extra
concurrency specifiable in terms of type-specific dependencies. It has been shown {Kung 79] that two-phase
locking is optimal vader such conditions of limited semontic knowledge. but much more concurrency can be
obtained if :nore semantic information is used. The locking technique described here generalizes the ideas
behind Rcad/Write locking. It permits the definition of type-specific locking rules that reflect the
interleaving spcecifications of individual data types. More restrictive type-specific locking schemes have

previously been investigated by Korth [Korth 83},

Two observations can be made concerning type-specific dependencies. First, they specify the way in which
type-specific operations on behalf of different transactions may be interleaved. Analogously, the generalized
locking scheme requires the definition of type-specific Jock classes, which correspond roughly to the
cperations on the type. Sccond, in addition to the operations, the dependencices reflect data supplied to the
opcrations as arguments or data that is otherwise specific to the particular object acted upon. Therefore, an
instance of a lock in the gencralized locking scheme cousists of two parts: the type-specific lock class and
some amount of instance-specific data. [t is the inclusion of @ata in the lock instance that differentiates our

technique from Korth's. We use the notation {LockClass{duata)} to represent an instance of a lock.

Once the lock classes for a type have been defined, a Boolean function must be given that specifies whether

a particular ncw lock request miay be granted as a function of those locks alrcady held on the object. In




23

accordance with the practice i database fiterature, this function will be represented by a luck compatibility
table. Only those locks held by other transactions need be checked for compatibifity: a new lock request is

always compatible with other locks hield by the same transaction.,

To complete the description of a type’s locking scheme, one must specify the protocol by which cach of the
npe’s operatons acquires and releases tocks.  Although two-phase locking can be used with tvpe-specific
locks. the locking protocol may also be type-specific. A uniform two-phase protocol is simplest to understand,
hut the added flexibility of type-specific protocols can allow increased concurrency. The exact nature of a
typesspecific protocol depends not only on the semantics of the type, but also on the particular representation

and implementation chosen.

6.2 Directories

A simple ideahzed implementation of the Dircctory type specified in Section 4.1 illustrates the basics of
type-specfic locking. In this example, it is assumed that the Dircctory operations have been implemented in
a straightforward tashion with no attempt at internal concurrency. It is further assumed that the operations
act under the protection of a monitor or other mutual exclusion mechanism during the actual manipulation of
Dircctory ohjects. Locking is used exclusively to control the sequencing of Dircctory operations on behalf of
multiple transactions.  The locking and mutual exclusion mechanisms cannot be completely independent,
however, because mutual exclusion must be released when waiting for a lock within the monitor. This is a

standard tcchnique in systems that use monitors for synchronization [Hoare 74].

Because the mapping from invocation schedules to abstract schedules is trivial for this implementation, the
sccond step of the validation process is climinated. The discussion of the locking scheme for Dircctories
therefore focuses on the first and third steps: informal characterization of the sct of legal schedules, and

comparison of this set with the sct of consistent schedules.

As was noted in Scction 4.1, the opcrations for the Dircctory data type can be divided into three groups:

o Modify operations, that alter the particular Dircctory entry identified by the key string o.

¢ Lookup operations, that obscive the presence, absence, or contents of the particular Dircctory
entry identified by the key string o.

e Dump opcrations, that observe properties of the Directory that cannot be isolated to an individual
entry.
Corresponding to these groups, three lock classes can be defined:

¢ {DirModify(o)}: To indicate that an incomplcte transaction has inscrted or deleted an entry with
key string o.
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e {Dirl.ookup(u)}: To indicae at an incomplete transaction has attempted o vbserve the entry
with key string a.

o {DirDump}: To indicate that an incompleic transaction has pertormed a DirDumgp of the cntire
directory.

The Tock compatibility table for Directories can be found in Table 1. Since there are a potentially infinite

number of strings. the symbols o and ¢ arc used o represent two arkitrary non-tdentical strings.

Lock Held
DirModify(c) Dirl.ookup{o)  DirDump

Lock Reguesied DirModily(o) No No No
DirModily(o') OK OK No

Dirl.ookup(o) No OK OK

Dirl.ookup(a") OK OK OK

DirDump No oK OK

Table 1: Lock Compatibility Table for Dircctorics

Each entry in this table reflects the nature of one of the type-specific dependency relations for Dircctories.
Compatible entries represent dependency relations in which cycles are allowed to occur: for example, the

entry in ruw 2. coinmn 2 is "OK™ because cycles are permitted in the < ) dependency relation,

M(o) — Mlo
Incompatibic entries reflect proscribed relations, such as the entry in row 1, column 2, which is duc to the

proscribed € relation,

M) ~» M(o)

The protocol used by the Directory operations for acquiring and releasing locks is as follows:

» Dirlnsert or DirDelete operations that specify the key string o cbtain a {DirModify(o)} lock on
the Directory. If the gperation succeeds, the lock is held until end-of-transaction. If the operation
fails, the lock is converted to a {Dirl.ookup(e)} lock, which is held until end-of-transaction.

e Dirl.ookup opcrations that specify the key string o obtain a {DirLookup(c)} lock on the Directory
that is held until end-of-transaction.

o DirDump opcrations obtain a {DirDump} lock on the Directory that is held until end-of-
transaction.

The following examplc demonstrates how the components of the locking scheme interact. Suppose a
Directory D is initially empty. If a transaction T , performs the operation DirDelete(I), "Zebra"), this
operation will fail by returning not found and leave a {DirLookup("Zehra™)} lock on the Dircctory until the
termination  of Tl‘ Now suppose a sccond transaction, Tz’ performs the operation
Dirinsert(D, "Zebra”, capa). According to the protocol, Dirfusert must first obtain a {DirModify("Zcbra")}

lock. Because the dependency relation € is proscribed, this lock is incompatible with the

o) — M(o)
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{Dici.ookup("Zebra™)} lock already held by 'l'l (sec row 1, columa 3 of the compatibility tabic). Therefore,
T2 will be blocked. If'I' subsequently becomes blocked while attempting to access an object already locked
by T,. a decadlock will occur. Both transactions arce then blocked atempting to form dependencies that are
part of proscribed relations. Although these relations may involve different objects, or cven different types, a
cycle in the union of the two relations is effectively prevented. This is exactly the behavior required to
achicve consistency among cooperative types. On the other hand. if T, completes successfully the lock is
released and the dependency ()f“l‘2 on 'I‘l is permitted to form. Since the [{o) — M{g) dependency cannot

lead 1o cascading aborts, one may conclude (after the fact) that delaying 'l'7 was Unnecessary.

By contrast, a transaction T3 that performs the operation Dirinsert(1), "Giraffe” capa) nced not be blocked,
because the <ua) M) dependency relation is not proscribed.  Accordingly, row 2, column 3 of the
compatibility table indicates that a {DirModify("Giraffe”)} lock is compatible with a {Dirl.ookup("7Zchra”)}

lock.

Although not a formal proof, this example characterizes the sct of legal schedules nermitted by the
implementation. and shows how the lock <lasses, compatibility table, and locking protocol combine to
guarantee that the legal schedules correspond to the consistent scheduies defined in the last section. They
capturc the idea that, for this abstract data type. synchronization of access depends on the operations being
performed. the particular entrics in the Directory they attempt to reference, and their outcome. Because locks
are on Dircctory objects, not components of dircctories, the technique also handles phantoms: entries that are

mentioncd in operations but are not present in the Directory.

6.3 Strictly FIFO Queues

Type-specific locking can also be used in implementations of the Quecue data type of Section 4.2. As in the
preceding example, assume a idealized implementation operating under conditions of mutual exclusion. To
implement strictly FIFO Queucs supporting only QEnter and QRemove operations, two lock classes are
sufficient:  {QEnter(o)} and {QRcmove(o)}. As in the case of Dircctorics, locks on Queucs identify the
particular entry to which the operation requesting the lock refers. Since Queue entries are not identified by
key strings, it is assumed that at QFEnter time, each clement is assigned an identificr unique to the Queue
instancc. Thesc identifiers correspond to those used in defining the dependency relations. Thus, a
{QEnter(g)} lock indicates that an clement with identifier ¢ has been entered into the Quecuc by an
incomplcte transaction. Likewise. a {QRcemove(o)} lock indicates that the element with identifier o has been

removed form the Queuc by an incomplcte transaction.

The protocol for the Queue operations is:
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o Qlnter uperations st obitain a {QEnter{e)} lock, where o is the newly-assigned icentifier for
the entry to be added. This tock is held until end-of-transaction,

o QRemove operations must obiain a {QRemove(o)} lock, where ¢ is the identifier of the entry ai
the head of the Queue. This lock is held until end-of-transaction.  Note that obtaining a
{QRemove(o)} Tock does not necessarily iinply that an entry o is actuaily in the Queuc, because
the transaction that made the entry may have since aborted. If so, the QRemove operation must
request a {QRemove{o )} lock on the new headimost entry. o'

Table 2 shows the lock compatibility table for Queucs.  As usual, the symbols o and o' represent the
identificrs of two different clements,  Because the element identifiers are unique, certain situations (c.g.
attempting to enter an clement with the samc identifier as an clement already removed) cannot occur. The

compatibility function is undefined in these cases. so the table entries are marked *“NA’ for "Not Applicable’.

Lock Held
QFEnter(o) QRcemove(o)
Lock Requested  QFnter(o) NA NA
Qknter{a") No OK
QRemove(o) No NA
QRemove(s’) OK No

Table 2: Lock Compatibility Table for Qucues

The lock compatibility table reflects the limited concurrency of this type. Once a QRemove operation has
retricved the cntry with identifier g, some entry with identifier ¢’ becomes the head element of the Queue,
But other transactions will be blocked trying to obtain the {QRemove(o’)} lock nceded to remove it, until the
first transaction completes. Multiple QEnter operations on behalf of differcnt transactions interact in the
same way. The incompatibility of {QRemove(o)} with {QEnter(c)} ensures that an uncommitted entry

cannot be removed from the Queue, thereby climinating a potential cause of cascading aborts.

6.4 WQueues

For a comparable idealized implementaticn of WQueues supporting only WQEnter and WQRemove, the
same lock classes may be used as for FIFO Qucues. The major difference between the two types shows up in
the lock compatibility function, given by Table 3. To reflect the allowability of nterlcaved WQEnter
operations by different transactions, the table entry in row 2, column 2 defines {WQEnter{g)} and
{WQEnter(c)} locks to bc compativle. Similarly, the entry in row 4, column 3 now permits multiple
transactions to perform WQRemove operations. The only remaining restriction is the one in row 3, column 2
that prevents uncommitted entries from being removed. This prevents cycles in the proscribed <F(

¢) — R(og)
dependency relation and, becausc the lock is held untl end-of-transaction, also prevents cascading aborts.
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Lock Held
WQEnter{(o)  WQRemove(o)
Tock Requested  WQFEnter(o) NA NA
WQtknter(c’) OK OK
WQRcemove(o) No NA
WQRemove{o") OK OK

Table 3: [.ock Compatibility Table for WQucués

The locking protocol for the WQuecuce opcrations is substantially the same as the one for the Quecue
operations. The only difference is that a WQRemove opcration that is unable to obtain the required
{WOQRemove(a)} lock on the clement at the head of the WGueue does not block. [nstcad, WQRemove
scarches down the WQucue for some other element with identifier o, for which a {WQRemove(o')} lock can
be obtained. This reflects the property of WQueucs that permits elements farther down the WQueuc 0 be
removed when the head element is uncommitted. If no clement can be found, the operation is biocked until

an inserting transaction commits.

6.5 Summary

The cxamples in this section have shown how type-specific locking can be used for synchronization in
implementations of several data types. The examples show how locking can be used to prevent cycles in
proscribed dependency relations, including cycles containing several types of objects. They also indicate how

locking can be used t) prevent cascading aborts.

A full discussion of the syntax and implementation of type-specific locking mechanisms is beyond the scope
of this paper. Further work is necded to determine the specific primitives required for definition of new
object types, locking, unlocking, conditional locking, etc. Another arca requiring further study is the
relationship between the locking mechanism and other synchronization mechanisms that are used for mutual
exclusion and to signal cvents. It appears, however, that implementation of a type-specific locking
mechanism is often no more complex or expensive than implementations of standard locking. Unlike
predicate locking schemes [Eswaran 76], the set of locks that apply to a particular object can easily be
determined. It is also not difficult to determine what processes may be awakened in response to an event such

as transaction complction,
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7 Summary

This paper has been concerned with synchronizing transactions that access shared abstract types. In cur

model, four propertics distinguish such types from others:

e Opcrations on them arc permancnt.
e They suppert failure atomicity of transactions,
e They do not permit cascading aborts.

e They contribute to preserving ordering propertics of groups of transactions.

These propertics are not independent, and the mechanisms that arc used to achicve them are therefore refated

as well,

Schedules and dependencics are uscful in understanding the intcraction between concurrent transactions.
The well-known consistency property of scrializability can be redefined as a special case of orderability with
respect to a dependency rclation.  The specific dependency relation depends on how much semantic
knowledge is available conccrning operations on objects.  When Read operations are distinguished from
Write vperations, serializability requires orderability with respect to a less restrictive dependency relation than
when this distinction is not made. Dependencies can also be used to characterize schedules that are not prone

to cascading aborts.

Additional type-specific semantic knowledge about operations can allow additional concurrency. The
interleaving specifications for Directories and Queues developed in Scctions 4.1 and 4.2 were stated in terms
of ordcrability with respect to type-specific dependencies. To increase concurrency further, the WQueue
sacrifices serializabili.;” while preserving orderability with respect to a less restrictive dependency. When
several abstract types are combined in a transaction, orderability must be guaranteed with respect to the

relation that is the union of the proscribed relations of the individual types.

Section 6 described a locking mechanism for implementing the synchronization required by the types
described in Section 4. By allowing locks that consist of a type-specific lock class and instance-specific data,
th¢ mechanism provides a powerful framework for using type-specific semantics in synchronization. This
mechanism is suitable for usc in transactions containing multiple types, and it can also be used to prevent
cascading aborts. The implcfncmation of Directories shows how type-specific locking permits a uniform
treatment of the problem of phantoms. L.ocks nced not be directly associated with particular components of
objects, which facilitates the scparation of synchronization from other type representation issues. The

examples of various Qucue types show the mechanism’s flexibility.
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This paper has not provided a complete discussion of the issucs involved in the specification and
implementation of shared abstract types. 'or example, we have not discussed the construction of compound
sharcd abstract types. which use other shared abstract types in their implemnentation. (However, Schwarz
[Schwarz 82] gives an example of this.) In addition, we have hardly mentioned recovery considerations,
though we beiieve logging mechanisms as described by findsay {I.indsay 79] can be extended to mect the
needs of shared abstract types. Recovery is discussed more fully in a refated paper [Schwarz 83]. Finally, we

have not discussed specific algorithms for coping with deadlocks.

Clearly, the definition and implementation of shared abstract types is maore difficult than the definition and
implementation of regular abstract types. However, once these types are implunented, programmers can
construct arbitrary transactions that invoke operations on the types. These wansactions should greatly
simplify the construction of reliable distributed systems. Though this paper has focused entircly on
synchronization, we belicve that this topic is central to understanding how transactions can be used as a basic

building block in the implementation of distributed systems.
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